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One of the stages of producing multilayer films and two-component fibers (including 
optical fibers) is joint extrusion of two or more molten polymers through a forming channel. 
Here there is layered or stratified flow [i]. Areas of steady-state stratified flow are the 
most completely studied where the profile of the flow rate and the position of the interface 
of the liquid layers is unchanged over the length of the channel [1-4]. Fewer works are de- 
voted to studying the initial area of combined flow where, as is shown in an experiment in 
[5] and in theoretical finite element analysis [6], the coordinates of the interface vary 
considerably. 

In this work results are offered for a numerical study of two-layer flow of immiscible 
viscoelastic liquids. A mathematical flow model and a method for numerical realization 
are provided, and the results of calculations are analyzed. 

i. Statement of the Problem and Method of Solution. Stationary axisymmetrical two- 
layer flow of viscoelastic liquids of equal densities in a cylindrical channel is consid- 
ered. Variables are the vortex ~ and flow function q, which are connected with velocity 
vector components Vr and v z so that 
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and differential equations which determine the mathematical flow mode], have the form [7] 
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where r and z are coordinates; p is density; D is polymer viscosity. 

In equations for vortex strength (i.i) the source term is determined by a selected 
rheological equation of state (RES). We use the de Witt model as an RES which predicts an 
anomaly for liquid viscosity and also appearance in steady-state flow of first and second 
differences for normal stresses [i]: 

Ti~ + % D ~ i f l ( D j t )  = pd~]. (1 .3)  

Here ~ is liquid relaxation time; ~ij, dij are stress deviator tensor components and strain 

rate tensor; Dj/Djt is Yauman derivative. Taking account of (1.3) the expression for S w is 
written as 
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where 
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Equations (1.1)-(1.3) will be correct for both liquids with consideration of ~, ~, and 
the position of a liquid with respect to the interface F. In implicit form the equation 
for the interface has the form 

F(r,  z) = O. ( 1 . 4 )  

Mathematical formulation of this equation is refined after considering the boundary condi- 
tions of the problem. 

We shall assume that at the inlet to the zone of combined flow individual flows are 
hydrodynamically developed and at the outlet from the channel conditions of steady-state 
two-layer flow are fulfilled. Also conditions of axisymmetrical flow, impenetrability of 
the channel walls, and sticking of liquids to them are fulfilled. 

At the interface equality is assumed for the velocities of touching liquid particles 
and there is also equality for stresses which operate from the direction of the first to 
the second liquid (the effect of surface tension is ignored in view of its smallness) [8]: 

v a = v b, r ~  F; ( 1 . 5 )  

S ~ = S  b,~, r ~ F  ( 1 . 6 )  

(v a and v b are velocity vectors, and S ~ S b ,~ and ,, are the vectors of stresses at the liquid 
interface orientated with normal n). 

Condition (1.6) may be written in terms of stress tensor components in projections on 
normal n and tangent t to the interface: 

~' b~ T. [ ( - -  P%t} + T~)) hi] n~ = [ ( - -  p Oij + T ~ ) n i l  hi, (1 .7 )  
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Here  6 i j  i s  K r o n e c k e r  s ym bo l ;  p a ,  pb a r e  h y d r a u l i c  p r e s s u r e s  in  t h e  l a y e r s ;  n i T ,  t i T  a r e  
t r a n s p o s e d  m a t r i c e s  o f  t h e  v e c t o r s .  

I t  f o l l o w s  f rom c o n d i t i o n  ( 1 . 5 )  t h a t  t h e  i n t e r f a c e  i s  a f l o w  s u r f a c e .  The v a l u e  o f  
f l o w  f u n c t i o n s  in  i t  a r e  d e t e r m i n e d  f rom t h e  c o n d i t i o n  f o r  c o n s t a n c y  o f  t h e  f l o w  r a t e s  o f  
b o t h  l i q u i d s  Qa and Qb: 

nz(z) 

Q~ = 2~ J" v~r ar; ( 1.  9 ) 
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R z (z) 

[Rz(Z) are coordinates of the interface, R 2 is channel radius]. 

It is possible to assume that at the channel axis the flow function equals zero, and 

at the interface its values are constant, i.e., ~a(Rz(z) , z) = ~b(Rz(Z), z). Then from 
conditions (1.9) and (I.i0) we obtain values of flow functions: 

at the interface 

q'(R~(z), z) = ppa,'2~: (i.11) 
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at the channel wall 

r z) = p(Qa + Ob),2a" ( 1 . 1 2 )  

Whence i t  f o l l o w s  t h a t  t h e  phase  i n t e r f a c e  i s  d e t e r m i n e d  by c o n d i t i o n  ( 1 .1 1 )  which i s  t h u s  
an e q u a t i o n  f o r  f i n d i n g  t h e  c o o r d i n a t e s  o f  t h e  l i q u i d  i n t e r f a c e  Rz(z)  in  t w o - l a y e r  ax i sym-  
m e t r i c a l  f low.  

Boundary  c o n d i t i o n s  f o r  t h e  v o r t e x  ~ a , b ( R z ( z ) ,  z) may be o b t a i n e d  by l a y i n g  ou t  in  a 
s e r i e s  t h e  f l ow  f u n c t i o n  in  t h e  d i r e c t i o n  o f  t h e  normal  t o  t h e  i n t e r f a c e  and t a k i n g  a c c o u n t  
o f  r e l a t i o n s h i p s  ( 1 . 5 ) ;  ( 1 . 6 ) ,  ( 1 . 8 ) .  However, i t  i s  v e r y  d i f f i c u l t  to  r e a l i z e  t h e s e  c o n d i -  
t i o n s .  

T h e r e f o r e ,  we use  an a p p r o x i m a t e  method w i t h  smoothed c o e f f i c i e n t s  [9 ] .  In  e s s e n c e  t h i s  
method consists of the fact that at the interface a phase is not clearly separated since separa- 
tion functions in it are substituted by continuous functions within the limits of the small 
vicinity of this boundary. Here it is not required to state boundary conditions at the in- 
terface (1.5) and (1.6) since they are fulfilled automatically in view of the continuity in- 
troduced for the functions. 

The possibility of applying this method for studying processes of stratified flow of 
liquids is physically sound for the diffusion of molten polymers with combined flow. There- 
fore, it is logical to assume that within the limits of the vicinity of the interface vis- 
cosity and relaxation time vary from values in the inner layer to those in the outer layer. 
Smoothing of functions p and I should be continuous and have continuous derivatives. There- 
fore, for conjugation we use po]ynomials, i.e., third or fifth order parabola. Thus, the 
distribution of viscosity will be as follows: 

[~ta(r, Z), 
I ~ (r, z) = / ~  t~ (r, z), 

Limb (r, z), 

r<~ Rz(z)--5, 
Rz(Z) - -  6 <~r <~ Rz (z) + 6, 
r >~ R~(z) + 6 (1.13) 

[D~ z) and 6 are viscosity and half-thickness of the boundary layer]. The distribution 
rule for relaxation time is also similar. 11; is noted that since coordinates Rz(z) are for 
values of flow function (I.ii), then smoothing is actually carried out with respect to ~, 
and interval 6 corresponds to a specific range of values of ~. By solving the boundary 
problem for equations with smoothed coefficients we obtain an approximate solution for the 
original boundary problem which will be more accurate, the less the width of the smoothing 
zone. In solving the problem by the grid method interval 26 should include along axis r not 
less than five nodes of the calculation grid, and it is desirable that the pitch of the grid 
within this range is constant. 

In order to obtain difference analogs of differential Eqs. (i.I) and (1.2) we use an 
integral method [7]. We solve the set of algebraic equations by the Liebman iteration meth- 
od. Coordinates of the interface Rz(z) are determined from condition (i.ii) by additional 
iterations. 

Numerical solution of this problem in the region of steady-state flow was compared with 
the analytical solution [2], and in the initial section the particular solution (for New- 
tonian liquids) was compared with results in [6]. The maximum divergence of results for the 
velocity field did not exceed 5%. Calculations were carried out in the range of Reynolds 
numbers Re = 10-2-10 -5 and Weissenberg numbers We = 2"10-i-10 -3 for both flows. 

2. Analysis of the Results Obtained. Presented in Fig. 1 is the velocity field for 
two-layer flow of liquids with flow rates Qa = Qb = 60.10-9 m3/sec, viscosities ~a = 4000 

Pa-sec, Db = 6300 Pa.sec, and relaxation times I a = ib = I0-~ sec in a channel with R 2 = 
3-10 -3 m. The radius of the channel from which the inner melt A enters with velocity Vz(0, 
0) = 6"10 -3 m/sec, R~ = 0.87R 2. Lines 1-5 relate to ~-i06 = 0, i, 3.8, 9.55, 16.7 kg/sec. 
It is possible to separate two areas in the velocity field. The first in which there is re- 
building of the flow rate profile and where flow lines are not parallel to the channel wall, 
by analogy with single-layer flows we call an area of hydrodynamic stabilization (liDS). The 
second, where flow lines are parallel to each other and the wall, and the velocity profile 
is unchanged over the channel length, is an area of steady-state flow. 
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By using Eq. (I.ii) we determine the layer interface. It coincides with flow line ~ = 
9.55"10 -~ kg/sec. The liquid interface is not a continuation of the inner channel surface. 
Its coordinates vary along the length in a specific way up to a constant value in the zone 
of steady-state flow which only depends on the ratio of flow rates and the ratio of liquid 
viscosities at the interface [3]. The radius of the inner channel R I only determines the 
shape of the interface in the initial section. 

At the inlet to the zone of combined liquid flow there are marked differences in veloc- 
ity profiles. With merging of the flows there is acceleration of liquid boundary layer par- 
ticles and simultaneously a change in the coordinates of the interface. Considerable defor- 
mations arise in two-layer flow. As the liquids advance over the channel deformations in 
the layers are leveled out and in the region of steady-state flow their difference is only 
determined by the rheological properties of the materials [3]. 

It seems that many defects of polymer layered articles (instability of the interface, 
disruption of adhesion between layers) are the result of the specific stress-strained state 
of flow in the initial section. We consider the distribution of tangential stresses in two- 
layer flow (Fig. 2). Flow parameters here are the same as for Fig. i, only Qa = 60.10-s m3/ 

sec, Qb = 15.10-9 m3/sec, and R~ = 0.4R 2. Curves i-i0 relate to ~rz = 0, 0.01, 0.0125, 0.03, 
0.02, 0.005, 0.01, 0.012, 0.014, 0.016 MPa. In the initial section where stresses vary in 
the axial and radial directions values of ~rz are discontinuous at the interface. However, 
the value of a jump is small, and as predicted by Eq. (1.8) it decreases along the channel 
length to zero in the region of steady-state flow. We note a marked zone of positive values 
of ~rz bounded by curve 1 (Fig. 2), and also the high intensity of the change in stresses in 
the initial section. 

For practical purposes it is important to know the length of the HDS section L. With 
flow of viscous liquids it is normally estimated from the change in the flow velocity pro- 
file or from the section of tangential stress relaxation. Calculations carried out for two- 
layer flows of Newtonian liquids showed that for values of Re flow of the order of 10 -3- 
10 -6 L it is (I.0-2.0)R 2 in relation to radius RI at the inlet. With flow of viscoelastic 
liquids length L will be the size of the section of normal stress relaxation. For liquids 
described by the de Witt model with an increase in We, growth of L by 10-15% is observed com- 
pared with flows of Newtonian liquids. 

The length of the HDS section may also be estimated from the distribution of pressure 
in two-layer flow. Presented in Fig. 3 are curves for the change in pressure at tlhe inter- 
face of Newtonian liquids along the channel length in relation to inner channel radius R I. 

Here Qa = 60.10-s m3/sec, Qb = 30.10-9 m3/sec, Na = 4000 Pa-sec, pb = 2000 Pa'sec. Curves 

la, b correspond to pressures of pa(Rz(z) , z) and pb(Rz(Z) , z) with R I = 0.4R2, and curves 
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2a, b correspond to pressures with RI = 0.65R 2. As follows from boundary conditions (]..7) 
in the general case the pressure field is discontinuous at this interface. In the region of 
steady-state flow when the line of the layer interface is parallel to axis z and normal 
stresses in Newtonian liquids are zero, pressures pa and pb at the interface are equal. It 
can be seen from Fig. 3 that in the second case when coordinates Rz(z) are almost unchanged 
along the channel length (for given ratios of viscosities and ratios of flow rates in steady- 
state flow R z = 0.67R2), the HDS section has smaller dimensions than in the first case. Here 
the amount of the pressure drop in the second case is also less, which is connected with 
lower energy losses in rebuilding the two-layer flow velocity profile. 

Thus, conditions at the inlet to the zone of combined flow mainly determine the nature 
of two-layer flow in the initial section. 
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